
PRoofster: Automated Formal Verification
Arpan Agrawal

University of Illinois
Urbana-Champaign, IL, USA

arpan2@illinois.edu

Emily First
University of Massachusetts

Amherst, MA, USA
efirst@cs.umass.edu

Zhanna Kaufman
University of Massachusetts

Amherst, MA, USA
zhannakaufma@cs.umass.edu

Tom Reichel
University of Illinois

Urbana-Champaign, IL, USA
reichel3@illinois.edu

Shizhuo Zhang
University of Illinois

Urbana-Champaign, IL, USA
shizhuo2@illinois.edu

Timothy Zhou
University of Illinois

Urbana-Champaign, IL, USA
ttz2@illinois.edu

Alex Sanchez-Stern
University of Massachusetts

Amherst, MA, USA
sanchezstern@cs.umass.edu

Talia Ringer
University of Illinois

Urbana-Champaign, IL, USA
tringer@illinois.edu

Yuriy Brun
University of Massachusetts

Amherst, MA, USA
brun@cs.umass.edu

Abstract—Formal verification is an effective but extremely
work-intensive method of improving software quality. Verifying
the correctness of software systems often requires significantly
more effort than implementing them in the first place, despite
the existence of proof assistants, such as Coq, aiding the process.
Recent work has aimed to fully automate the synthesis of formal
verification proofs, but little tool support exists for practitioners.
This paper presents PRoofster, a web-based tool aimed at assisting
developers with the formal verification process via proof synthesis.
PRoofster inputs a Coq theorem specifying a property of a
software system and attempts to automatically synthesize a formal
proof of the correctness of that property. When it is unable to
produce a proof, PRoofster outputs the proof-space search tree
its synthesis explored, which can guide the developer to provide a
hint to enable PRoofster to synthesize the proof. PRoofster runs
online at https://proofster.cs.umass.edu/ and a video demonstrating
PRoofster is available at https://youtu.be/xQAi66lRfwI/.

I. INTRODUCTION

Software bugs are so routine that the annual cost of
operational software failures is more than $1.56 trillion [15],
and software engineers spend 35–50% of their time validating
and debugging software [18]. Formal verification is a promising
method for building correct software systems. Proof assistants,
such as Coq [28] and HOL4 [25], inherently support program
verification and have had significant industrial impact. For
example, Airbus France uses the Coq-verified CompCert C
compiler [16] to ensure safety and improve performance of
its aircraft [26], Chrome, Android, and Firefox use verified
cryptographic libraries [5], [13], and Amazon Web Services
applies formal verification to detect misconfigurations that can
compromise cloud security [1].

Unfortunately, formal verification is challenging. Writing
proofs in Coq is a painstaking exercise that requires deep
expertise, as seen in the engineering processes behind several
large proof developments [12], [29]. Even with the help of
an Interactive Theorem Prover, the effort required to write
proofs is often prohibitive. The Coq proof of the C compiler
is more than three times that of the compiler code itself [16].

Meanwhile, it took 11 person-years to write the proofs required
to verify the seL4 microkernel [17], which represents a tiny
fraction of the functionality of a full kernel.

Recent work has aimed to simplify the process of writing
proofs [2], [6], [7], [9], [10], [14], [11], [23], [24], [30].
Some formal verification can even be fully automated via
proof synthesis. For example, CoqHammer [4] uses a set
of precomputed mathematical facts to attempt to “hammer”
out a proof. Meanwhile, ASTactic [30], Proverbot9001 [23],
TacTok [7], Diva [6], and Passport [24] learn a predictive model
from a corpus of existing proofs and use that model to guide
a meta-heuristic search to synthesize a proof from scratch.

Unfortunately, relatively little tool support exists for practi-
tioners to use these Coq proof-synthesis tools. For example, of
the above-mentioned search-based tools, all but one have neither
been integrated into IDEs nor built as stand-alone, graphical
interfaces, making adoption difficult. Only Tactician [2] has
a usable interface, by way of a plugin for Coq that can be
integrated into Coq IDEs. But even then, the interface does not
expose the features that help the user understand what the tool
is doing under the hood, making debugging and explainability
difficult.

In this paper, we present PRoofster, a new graphical frontend
for search-based proof-synthesis techniques that emphasizes
explainability. Conceptually, PRoofster can be straightforwardly
extended to work with any proof-synthesis backend tool,
and implements special features to support explainability for
search-based backends. Here, we demonstrate PRoofster with
Proverbot9001 [23] as its backend.

PRoofster’s main contributions support the developer in two
ways:

1) The developer can enter a theorem describing a software
property they want proven, and PRoofster uses its underly-
ing backend to attempt to generate a proof. If successful,
PRoofster displays the Coq proof script, verifying that the
property is correct. PRoofster uses the Alectryon library to

1

https://proofster.cs.umass.edu/
https://youtu.be/xQAi66lRfwI/

render literate Coq code [20], which is interactive and easy
to read, even when one does not have immediate access
to a proof assistant to step through the synthesized proof.
The developer can explore the context throughout the
proof to better understand why the property is verifiably
correct.

2) If the synthesis is unsuccessful, PRoofster uses the D3.js
library [3] to allow the developer to interactively explore
the search tree it used in trying to synthesize a proof, and
understand the relevant context. The developer can then
identify the most promising search-path, augment it, and
have PRoofster attempt to synthesize a proof again, using
that information.

A live PRoofster deployment is available at https://proofster.
cs.umass.edu/.

II. PROOFSTER

PRoofster is a frontend tool that interfaces with Coq-
based proof synthesis tools. Section II-A discusses how
proof engineers interactively write proofs in Coq and how
machine-learning-guided proof synthesis tools automatically
generate proofs. Section II-B then describes the PRoofster
implementation and Section II-C illustrates, with examples,
how a proof engineer can use PRoofster to construct proofs.

A. Proofs and proof synthesis in Coq

When using the Coq proof assistant, a developer begins by
specifying a theorem to prove. This theorem is a type definition
in Coq’s internal language, Gallina. A proof of that theorem is
a term of that type. However, writing that proof term directly
is difficult, and so Coq provides an interactive environment for
reasoning through a proof at a higher level, via a proof script.

The developer can use Coq’s Ltac language to construct a
proof script, a sequence of tactics which Coq uses to guide its
internal search for a Gallina-based proof term. The theorem
prover is called interactive, because the developer can specify
a tactic to try, have the theorem prover execute the tactic to
update the proof state (the set of goals that need to be proven,
and the known facts), and use that proof state to decide on the
next tactic. This interactive process continues until no goals
remain, meaning the theorem is proven.

The burden is on the developer to come up with the sequence
of tactics. To ease this burden, recent work has created
search-based, machine-learning-guided proof-synthesis tools
that perform automatic proof-script generation. Most of these
tools train a predictive model on a corpus of human-written
proof scripts. This model uses a partially written proof script
and the theorem being proven to predict a ranked list of the
most likely next tactics that should come in the proof script.

The tools differ in how they model the proof scripts when
making predictions. For example, ASTactic considers only
the current proof state (and ignores the current, partial proof
script) [30]. TacTok is a collection of two models — Tac
and Tok — both of which encode both the proof state and
the partial proof script. Tac works at the tactic granularity,
whereas Tok works at the token granularity; the two prove

complementary sets of theorems [7]. These tools model abstract
syntax trees using TreeLSTM [27] and proof-script sequences
using bidirectional LSTM [19], whereas Proverbot9001, which
also models proof state and partial proof script, uses a sequence
model [23]. Passport further enhances the model by encoding
identifier information for the names of theorems, datatypes,
functions, type constructors, and local variables [24]. GamePad,
meanwhile, uses its own RNN-based tree encoder and targets
only synthetic lemmas [11]. Finally, Diva observes that the
variability inherent in machine learning — small perturbations
in the learning process, such as hyperparameters, the order in
which the training data is seen, and the encoded richness of the
training data — leads to diversity in the sets of theorems the
learned models can prove. Using the theorem prover’s unique
ability to serve as an oracle for correctness, Diva uses this
diversity to significantly increase its proving power [6].

Armed with a predictive model, these search-based tools
search through the space of possible proof scripts. They use the
model to predict the likely next proof steps, and the theorem
prover to compute the new proof states or errors resulting from
these steps. They prune search paths unlikely to be successful
or that repeat an already explored state; Proverbot9001, in
particular, also prunes states that would explore a subgoal for
which a solution was already found. This search through the
space of proof scripts represents a set of potential partial proof
scripts that aim to make progress toward the goal of proving
the theorem. We call the set of explored search paths, together,
the search tree.

B. The PRoofster implementation

PRoofster is implemented as a Flask app and uses Beauti-
fulSoup to create the results page with the synthesized proof
and the search graph. PRoofster allows the developer to enter
a theorem into a text box (or select one from several examples,
as a demonstration). PRoofster then passes the developer-
specified theorem to its proof-synthesis backend and retrieves
the search tree, and, if the backend is successful, the synthesized
proof. PRoofster then uses Alectryon to render the proof as an
interactive, literate Coq object. Hovering over a tactic displays
the context and goals at that stage of the proof.

PRoofster uses the the D3.js library display the search tree
and allow the developer to interact with it. Subtrees can be
collapsed and expanded to see the tactics tried by the proof
synthesis model. This information can also be helpful to
developers to provide hints to PRoofster in the case where
PRoofster fails to prove the theorem initially.

PRoofster is deployed on AWS and is publicly available
at https://proofster.cs.umass.edu/. PRoofster is open-source,
and is publicly available at https://github.com/UCSD-PL/
proverbot9001/tree/demowebtool.

Next, we illustrate PRoofster’s two use cases using examples.

C. Using PRoofster

Supposed a developer has written a function, max_elem_list,
that takes a list of natural numbers and returns its largest
element. The developer would like to verify this function’s

2

https://proofster.cs.umass.edu/
https://proofster.cs.umass.edu/
https://proofster.cs.umass.edu/
https://github.com/UCSD-PL/proverbot9001/tree/demowebtool
https://github.com/UCSD-PL/proverbot9001/tree/demowebtool

Fig. 1. A PRoofster screenshot of the developer asking to prove the theorem
every_elem_le_max about the function max_elem_list.

Fig. 2. When PRoofster executes the query from Figure 1, it produces a
complete proof for the theorem every_elem_le_max. Hovering over a tactic
in the proof shows the proof state at that point in the proof, which allows the
developer to explore and understand how the proof verifies the property.

correctness by formally proving the property that each element
of the list is less than or equal to the result of executing
max_elem_list on that list.

The developer decides to use PRoofster to prove the above
property, in Coq. She heads over to https://proofster.cs.umass.
edu/ and enters some basic imports, the definition of the
max_elem_list function, and the theorem every_elem_le_max. She
does not enter the proof of the theorem, but only starts it with
Proof. and Admitted. to tell PRoofster to generate a proof for
that theorem. (PRoofster will replace Admitted. with the proof.)

Figure 1 shows a PRoofster screenshot with the developer’s
inputs. Clicking “Proofster it!” tells PRoofster to run its
backend to attempt to generate a proof. It succeeds, and
PRoofster displays the full proof (partial screenshot in Figure 2).

The backend will not always be able to produce a proof fully
automatically. Suppose the developer wants to verify another

Fig. 3. A PRoofster screenshot of the developer asking to prove the theorem
list_forall2.

Fig. 4. When PRoofster executes the query from Figure 3, it is not able to
generate a complete proof, but displays its search tree, instead. (Image has
been rotated for space.)

property. Given two lists, let proposition P be a proposition on
two elements, and let theorem list_forall2 say that proposition
P holds for every pair formed by zipping the two lists together.
Suppose the developer wants to then prove another property,
captured by theorem list_forall2_app, which states that for
all lists a1, a2, b1, b2, if list_forall2 holds for a1, b1 and
for a1, b1, then it also holds for the pair of lists formed by
appending a1 and a2, and appending b1 and b2.

Figure 3 shows the query the developers submits to PRoofster
to prove this theorem. However, PRoofster’s backend fails to
automatically synthesize a proof for this theorem. Instead of
a proof, PRoofster displays the search tree for the developer
to investigate (Figure 4). She sees that PRoofster tried a few
forms of induction on the input lists and gets an idea: perhaps
inducting over terms of the relation between lists list_forall2

a1 b1, rather than over the lists directly, will result in a more
informative inductive hypothesis. The developer returns to
the query page and suggests a hint for PRoofster: induction

1, which inducts over the first unnamed hypothesis (here,
the term of type list_forall2 a1 b1), something PRoofster had

3

https://proofster.cs.umass.edu/
https://proofster.cs.umass.edu/

Fig. 5. The succesful result of running the query in Figure 3, modified by
adding induction 1 before Admitted.

failed to try. She then admits the rest and queries PRoofster.
Armed with this hint, PRoofster synthesizes the correct proof
(Figure 5).

D. Evaluation Plan
We plan to evaluate PRoofster by soliciting feedback from

developers, and by using it in a proof engineering graduate
class. PRoofster’s backends have been thoroughly evaluated
on a benchmark of 68K Coq theorems from 122 open-source
projects. ASTactic can fully automatically prove 12.3% of
the theorems [30], Passport 12.7% [24], TacTok 12.9 [7],
Proverbot9001 [23] 19.2%, and Diva 21.7% [6]. Together
with CoqHammer, these tools can prove more than 33% of the
theorems.

III. RELATED WORK

The PRoofster web interface provides an environment to
interactively explore both the synthesized proof, and the
synthesis search process. It uses the Alectryon [20] library to
render literate Coq code, which is interactive and easy to read,
even when one does not have immediate access to a proof
assistant to step through the synthesized proof. jsCoq [8] and
PeaCoq [22] also allow you to interact with formal proofs
via web interfaces, but neither synthesize proofs. Tactician
tactic-learning Coq plugin can be accessed through a web
demonstration of two examples using jsCoq [2]. Section 7.1
of “QED at Large” [21] provides a thorough survey of user
interfaces for formal proofs.

Automatically synthesizing proofs from scratch is a promis-
ing direction in easing formal verification [4], [7], [6], [23],
[24], [30], jointly proving more than 33% of a large proof
benchmark [6]. However, these efforts have not yet directly
addressed usability and adoption, which is PRoofster’s goal.

REFERENCES

[1] AWS Provable Security. https://aws.amazon.com/security/
provable-security.

[2] L. Blaauwbroek, J. Urban, and H. Geuvers. Tactic learning and
proving for the Coq proof assistant. In E. Albert and L. Kovacs,
editors, International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR), volume 73, pages 138–150, 2020.

[3] M. Bostock. D3.js — Data-driven documents, 2012.
[4] Ł. Czajka and C. Kaliszyk. Hammer for Coq: Automation for dependent

type theory. Journal of Automated Reasoning, 61(1-4):423–453, 2018.
[5] A. Erbsen, J. Philipoom, J. Gross, R. Sloan, and A. Chlipala. Simple

high-level code for cryptographic arithmetic — with proofs, without
compromises. In IEEE S&P, pages 1202–1219, 2019.

[6] E. First and Y. Brun. Diversity-driven automated formal verification. In
ICSE, 2022.

[7] E. First, Y. Brun, and A. Guha. TacTok: Semantics-aware proof synthesis.
PACMPL, OOPSLA issue, 4:231:1–231:31, November 2020.

[8] E. J. Gallego Arias, B. Pin, and P. Jouvelot. jsCoq: Towards hybrid
theorem proving interfaces. In Workshop on User Interfaces for Theorem
Provers, pages 15–27, 2017.

[9] V. J. Hellendoorn, P. T. Devanbu, and M. A. Alipour. On the naturalness
of proofs. In ESEC/FSE NEIR, pages 724–728, 2018.

[10] J. Heras and E. Komendantskaya. Recycling proof patterns in Coq: Case
studies. Mathematics in Computer Science, 8(1):99–116, 2014.

[11] D. Huang, P. Dhariwal, D. Song, and I. Sutskever. GamePad: A
learning environment for theorem proving. In International Conference
on Learning Representations (ICLR), 2019.

[12] J. Jacky, S. Banerian, M. D. Ernst, C. Loncaric, S. Pernsteiner, Z. Tatlock,
and E. Torlak. Automatic formal verification for EPICS. In ICALEPCS,
2017.

[13] K. Jacobs and B. Beurdouche. Performance improvements via formally-
verified cryptography in Firefox. blog.mozilla.org/security/2020/07/06/
performance-improvements-via-formally-verified-cryptography-in-firefox/,
2020.

[14] E. Komendantskaya, J. Heras, and G. Grov. Machine learning in proof
general: Interfacing interfaces. In International Workshop on User
Interfaces for Theorem Provers (UITP), volume 118, 2012.

[15] H. Krasner. The cost of poor software quality in the US: A 2020 report.
https://www.it-cisq.org/pdf/CPSQ-2020-report.pdf, 2020.

[16] X. Leroy. Formal verification of a realistic compiler. Communications
of the ACM (CACM), 52(7):107–115, 2009.

[17] T. Murray, D. Matichuk, M. Brassil, P. Gammie, T. Bourke, S. Seefried,
C. Lewis, X. Gao, and G. Klein. seL4: From general purpose to a proof
of information flow enforcement. In IEEE S&P, pages 415–429, 2013.

[18] D. H. O’Dell. The debugging mindset: Understanding the psychology
of learning strategies leads to effective problem-solving skills. Queue,
15(1):71–90, Feb. 2017.

[19] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee,
and L. Zettlemoyer. Deep contextualized word representations. In
NAACL-HLT, volume 1, pages 2227–2237, 2018.

[20] C. Pit-Claudel. Untangling mechanized proofs. In International
Conference on Software Language Engineering, pages 155–174, 2020.

[21] T. Ringer, K. Palmskog, I. Sergey, M. Gligoric, and Z. Tatlock. QED at
large: A survey of engineering of formally verified software. Foundations
and Trends®in Programming Languages, 5(2-3):102–281, 2019.

[22] V. Robert. Front-end tooling for building and maintaining dependently-
typed functional programs. PhD thesis, UC San Diego, 2018.

[23] A. Sanchez-Stern, Y. Alhessi, L. Saul, and S. Lerner. Generating
correctness proofs with neural networks. In Machine Learning in
Programming Languages (MAPL), 2020.

[24] A. Sanchez-Stern, E. First, T. Zhou, Z. Kaufman, Y. Brun, and T. Ringer.
Passport: Improving automated formal verification using identifiers.
CoRR, abs/2204.10370, 2022. https://arxiv.org/abs/2204.10370.

[25] K. Slind and M. Norrish. A brief overview of HOL4. In International
Conference on Theorem Proving in Higher Order Logics, 2008.

[26] J. Souyris. Industrial use of CompCert on a safety-critical software prod-
uct. projects.laas.fr/IFSE/FMF/J3/slides/P05 Jean Souyiris.pdf, 2014.

[27] K. S. Tai, R. Socher, and C. D. Manning. Improved semantic
representations from tree-structured long short-term memory networks.
In ACL, volume 1, pages 1556–1566, 2015.

[28] The Coq Development Team. Coq, v.8.7. https://coq.inria.fr, 2017.
[29] J. R. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang, M. D. Ernst,

and T. Anderson. Verdi: A framework for implementing and formally
verifying distributed systems. In PLDI, pages 357–368, 2015.

[30] K. Yang and J. Deng. Learning to prove theorems via interacting with
proof assistants. In ICML, 2019.

4

https://aws.amazon.com/security/provable-security
https://aws.amazon.com/security/provable-security
blog.mozilla.org/security/2020/07/06/performance-improvements-via-formally-verified-cryptography-in-firefox/
blog.mozilla.org/security/2020/07/06/performance-improvements-via-formally-verified-cryptography-in-firefox/
https://www.it-cisq.org/pdf/CPSQ-2020-report.pdf
https://arxiv.org/abs/2204.10370
projects.laas.fr/IFSE/FMF/J3/slides/P05_Jean_Souyiris.pdf
https://coq.inria.fr

	I Introduction
	II Proofster
	II-A Proofs and proof synthesis in Coq
	II-B The PR[height=.75ex]roosterNoR.png oofster implementation
	II-C Using PR[height=.75ex]roosterNoR.png oofster
	II-D Evaluation Plan

	III Related Work
	References

