
Data-Driven Lemma Synthesis for Interactive Proofs

Interactive proofs of theorems often require auxiliary helper lemmas to prove the desired theorem. Existing
approaches for automatically synthesizing helper lemmas fall into two broad categories. Some approaches
are goal-directed, producing lemmas specifically to help a user make progress from a given proof state, but
they have limited expressiveness in terms of the lemmas that can be produced. Other approaches are highly
expressive, able to generate arbitrary lemmas from a given grammar, but they are completely undirected and
hence not amenable to interactive usage.

In this paper, we develop an approach to lemma synthesis that is both goal-directed and expressive.
The key novelty is a technique for reducing lemma synthesis to a data-driven program synthesis problem,
whereby examples for synthesis are generated from the current proof state. We also describe a technique to
systematically introduce new variables for lemma synthesis, as well as techniques for filtering and ranking
candidate lemmas for presentation to the user. We implement these ideas in a tool called lfind, which can be
run as a Coq tactic. In an evaluation on four benchmark suites, lfind produces useful lemmas in 65% of the
cases where a human prover used a lemma to make progress. In these cases lfind synthesizes a lemma that
either enables a fully automated proof of the original goal or that matches the human-provided lemma.

1 INTRODUCTION
Interactive proof assistants [de Moura et al. 2015; Filliâtre et al. 1997; Paulson 1993] are powerful
frameworks for writing code with strong guarantees.While various tools exist to perform automated
proof search [Bansal et al. 2019; First et al. 2020; Gauthier et al. 2017; Paliwal et al. 2020; Sanchez-
Stern et al. 2020; Sekiyama et al. 2017; Whalen 2016; Yang and Deng 2019] and to integrate external
automated solvers [Blanchette et al. 2011; Czajka and Kaliszyk 2018; Kaliszyk and Urban 2015a,b], the
manual proof burden remains high. One particular challenge is the need to identify auxiliary lemmas
that are required to prove a desired theorem. For example, the theorem’s induction hypothesis may
be too weak, thereby necessitating a stronger lemma that is amenable to an inductive proof. As
another example, a lemma may be required to rewrite a subgoal at a particular point in the proof
into a form that allows the induction hypothesis to be applied.
Existing approaches to address this problem through a form of lemma synthesis fall into two

categories. In the first category, heuristic rewrites are performed on the proof state at the point
where the user is stuck to identify potentially useful lemmas [Aubin 1976; Bundy et al. 1993;
Castaing 1985; Dixon and Fleuriot 2003; Hesketh 1992; Hummel 1990; Johansson et al. 2010;
Kapur and Subramaniam 1996; Kaufmann and Moore 1997; Sonnex et al. 2012]. For example,
the generalization technique [Boyer and Moore 1979; Kaufmann and Moore 1997] from ACL2
heuristically replaces one or more terms in the current subgoal with fresh variables. In the second
category of approaches, candidate lemmas are generated from a grammar through a form of
enumeration-based synthesis [Claessen et al. 2013; Reynolds and Kuncak 2015; Yang et al. 2019].
For example, HipSpec [Claessen et al. 2013] enumerates many candidate lemmas and attempts to
prove them with an automated prover.
The strength of the heuristic rewriting approach is that it is goal-directed, producing candidate

lemmas that are directly related to the current proof state. However, the approach has limited
expressiveness, as the space of possible candidates is dependent on a particular set of rewrite rules.
The enumeration approach has the opposite strengths and weaknesses. Because candidate lemmas
are enumerated from a grammar, they can be highly expressive. However, candidate lemmas are
generated in an undirected fashion, independent of the particular state where the user is stuck.

ACM SIGPLAN Conference on Programming Languages, ,
.

1

ACM SIGPLAN Conference on Programming Languages, ,

Hence this approach will generate many irrelevant lemmas and so is ill-suited for an interactive
setting. Indeed none of the enumeration-based tools cited above support interactive usage.
In this paper, we propose a new approach to lemma synthesis that combines the strengths

of the existing approaches. We show how to reduce lemma synthesis to a data-driven program
synthesis problem, which aims to synthesize an expression that meets a given set of input-output
examples. The examples for synthesis are generated directly from the current proof state, ensuring
that lemma candidates are targeted at the goal. At the same time, the approach enables the usage
of off-the-shelf data-driven program synthesizers that generate expressions in a user-provided
grammar [Albarghouthi et al. 2013; Feser et al. 2015; Frankle et al. 2016; Lubin et al. 2020; Miltner
et al. 2022; Osera and Zdancewic 2015]. This new approach allows us to successfully synthesize
helper lemmas for more stuck proofs than ever before.

Reducing lemma synthesis to data-driven program synthesis requires us to solve several technical
challenges. While data-driven synthesis is a common approach to generating other kinds of program
invariants [Ezudheen et al. 2018; Garg et al. 2014, 2016; Miltner et al. 2020; Padhi et al. 2016; Zhu
et al. 2018], for instance, loop invariants, these prior settings have several advantages that our
setting lacks. In prior settings, the desired invariant is a predicate over a fixed set of variables, for
example, the variables that are in scope at a loop. In contrast, it’s common for auxiliary lemmas
to require new variables that do not appear in the current proof state. Further, prior approaches
employ counterexample-guided inductive synthesis (CEGIS) [Solar-Lezama 2009], because there
exists a clear behavioral specification for the desired invariant: each candidate invariant is verified
against the specification, and counterexamples become new input-output examples for synthesis.
In our setting, we lack such a specification since a proof state can require an auxiliary lemma for
many different reasons. Hence we cannot generate input-output examples using CEGIS. Finally,
the lack of a specification also makes it difficult to determine whether any particular candidate
lemma is useful.
To address the problem of lemmas that require variables not appearing in the proof state, we

observe that the generalization technique [Boyer and Moore 1979; Kaufmann and Moore 1997]
described above can be used not only to produce candidate lemmas but also as a systematic way to
“lift” the current proof state to new variables for lemma synthesis. Hence our approach starts by
producing all generalizations of the proof state, each formed by replacing one or more terms with
fresh variables.
To generate examples for synthesis without counterexamples, we leverage the implicit obser-

vation underlying the heuristic rewriting approaches described earlier, that the necessary lemma
often has a similar structure to the goal in the current proof state. We produce a set of lemma
sketches for each generalized goal, each sketch consisting of a version of that goal but with one
expression replaced by a hole to be synthesized. We sample valuations of the variables in the current
goal to generate input examples, and the expected output value for each example is determined by
the value of the hole’s original expression. In this way, we require that the synthesized expression’s
behavior be consistent with that of the expression that it is replacing.
Finally, to address the lack of clear criteria for candidate lemmas to satisfy, we have developed

techniques to filter candidate lemmas that are not useful and to rank the remaining candidates based
on their likely utility to the user. Filtering removes lemmas that are determined to be either trivial,
redundant, or invalid, the latter using existing tools for automated counterexample search [Claessen
and Hughes 2000; Paraskevopoulou et al. 2015]. Since the ultimate utility of a lemma is based on
whether it is provable and allows the user to complete the current proof, our ranking approach
employs existing tools for automated proof search to categorize lemmas for user inspection.
We have implemented our approach as a tactic for Coq and call the resulting tool lfind. Coq

users can invoke lfind as a tactic at any point in their proof, and it will produce a set of ranked

2

Data-Driven Lemma Synthesis for Interactive Proofs ACM SIGPLAN Conference on Programming Languages, ,

lemma candidates. Lemma synthesis in lfind is targeted for use in proving properties of pro-
grams (as opposed to other uses of interactive theorem proving, such as formalizing mathematics).
This is a common use case for Coq, aligns with the focus of prior lemma synthesis approaches,
and is compatible with the data-driven style that our tool employs. Our approach is parameter-
ized by a data-driven program synthesizer (for candidate lemma generation), counterexample
searcher (for candidate filtering), and proof searcher (for candidate ranking). Our implementation
uses the Myth [Osera and Zdancewic 2015] data-driven program synthesizer for OCaml, the
Quickchick [Paraskevopoulou et al. 2015] tool for counterexample search, and the state-of-the-art
Proverbot9001[Sanchez-Stern et al. 2020] tool for proof script search. Note that our approach is
agnostic to the specific toolset we use for implementation; in fact, future improvements in data-
driven program synthesis, counterexample search, and proof search can be directly leveraged to
improve lemma synthesis.
We evaluate our approach on two benchmark suites from prior work on lemma synthesis,

clam [Ireland and Bundy 1996] and lia [Yang et al. 2019], as well as two new benchmarks from
diverse domains, full adder [cir 1995] and compiler correctness [Chlipala 2013]. Together, there
are 222 evaluation locations from these benchmarks, where a human prover used an auxiliary
lemma to progress. lfind synthesizes a useful lemma for 144/222 of these locations, with a median
runtime of 4.8 minutes (see §5.3). At 109 of these locations lfind provides a full automated proof
of the synthesized lemma and the goal; at the other 35 locations lfind produces a ranked list
of lemma candidates where the human-written lemma is in the top 10. We also show that our
approach significantly outperforms the prior technique of generalization as well as a version of
lfind that employs type-guided synthesis without examples (§5.4). Finally, in §5.5 we evaluate
lfind’s sensitivity to different hyperparameters and timeouts.

In summary, this paper makes the following contributions:

(1) We present the first approach that reduces the general lemma synthesis problem to a data-driven
program synthesis problem. The approach derives both lemma sketches as well as examples for
synthesis from a given stuck proof state, and it uses the existing generalization technique to lift
the proof state to new variables for synthesis.

(2) We describe a suite of filtering and ranking strategies for candidate lemmas, which is necessary
in the interactive verification setting.

(3) We have instantiated our approach in a tactic called lfind for Coq.
(4) Our experimental evaluation demonstrates the practical utility of our approach and tool, quan-

tifies the benefits over multiple alternative approaches to lemma synthesis, and investigates the
sensitivity of lfind to different parameter values.

2 OVERVIEW
2.1 Motivating Example
To illustrate how lfind works, we’ll start with an example. Figure 1 shows Coq code that tries to
prove a simple theorem: that reversing a list twice returns the same list. It starts by defining lists of
nats along with definitions for appending and reversing lists. Following that is an attempt to prove
the theorem, named rev_rev.

The proof proceeds by induction on the list l. The Nil case is easily proven, but the Cons case is
trickier. After simplification, the user is stuck because the goal is not in a form that enables direct
use of the induction hypothesis. Figure 2 shows the proof state at that point, including the current
assumptions and goal.

To get unstuck, the user can invoke our tool lfind as a tactic at this point. In this example, the
top three lemmas that lfind produces are as follows:

3

ACM SIGPLAN Conference on Programming Languages, ,

1 Inductive lst : Type :=

2 | Nil : lst

3 | Cons : nat -> lst -> lst.

5 Fixpoint app (l1 : lst) (l2 : lst) : lst :=

6 match l1 with

7 | Nil => l2

8 | Cons n l1' => Cons n (app l1' l2)

9 end.

11 Fixpoint rev (l : lst) : lst :=

12 match l with

13 | Nil => Nil

14 | Cons n l1' => app (rev l1') (Cons n Nil)

15 end.

17 Lemma rev_rev : forall l, rev (rev l) = l.

18 Proof.

19 induction l.

20 - reflexivity.

21 - simpl. (∗ I'm stuck! ∗)

Fig. 1. A partial proof of a theorem in Coq that requires an auxiliary lemma.

1 n : nat

2 l : lst

3 IHl : rev (rev l) = l

4 ---

5 rev (app (rev l) (Cons n Nil)) = Cons n l

Fig. 2. The proof state when the user gets stuck.

1(Λ1) Lemma lem1: forall l n,
2 rev (app l (Cons n Nil)) = Cons n (rev l).
3(Λ2) Lemma lem2: forall l1 l2,
4 rev (app l1 l2) = app (rev l1) (rev l2).
5(Λ2) Lemma lem3: forall l1 l2,
6 rev (app (rev l1) l2) = app (rev l2) l1.

Each lemma is bucketed into one of three categories (Λ1, Λ2, or Λ3), and the categories are
presented to the user in that order. Λ1 lemmas are those in which lfind can automatically find a
complete proof of the original goal using the generated lemma and Proverbot9001, a state-of-the-
art automated prover. In other words, lfind has successfully generated an appropriate auxiliary
lemma, proven that lemma, and used the lemma to complete the original proof. The lemma lem1 is
such an Λ1 lemma; the full proof of the theorem rev_rev using lem1 is shown in Figure 3.

Λ2 lemmas are those that are sufficient to automatically prove the original goal, but Prover-
bot9001 cannot automatically prove the auxiliary lemma. lfind indicates that the second and
third lemmas in the above listing are Λ2 lemmas; indeed, each of them in turn depends on its own
auxiliary lemmas, for example, the associativity of app. However, both lemmas are also still good
options for the user: the lemma lem2 is a more general version of lem1, while lemma lem3 reduces

4

Data-Driven Lemma Synthesis for Interactive Proofs ACM SIGPLAN Conference on Programming Languages, ,

1 Lemma lem1: forall l n,

2 rev (app l (Cons n Nil)) = Cons n (rev l).

3 Proof.

4 intros.

5 induction l.

6 simpl.

7 eauto.

8 simpl.

9 rewrite IHl.

10 eauto.

11 Qed.

13 Lemma rev_rev : forall l, rev (rev l) = l.

14 Proof.

15 induction l.

16 - reflexivity.

17 - simpl. rewrite <- IHl. unfold app.

18 rewrite IHl. rewrite lem1. rewrite IHl. easy.

19 Qed.

Fig. 3. A full proof provided by lfind.

to the original rev_rev lemma when l2 is Nil. Λ3 lemmas are ones that are not disprovable by a
tester like Quickchick but automation using Proverbot9001 can’t be used to prove either the
goal or the auxiliary lemma; since they are similar to the goal and not disprovable, they might still
be useful to the user.

In the rest of this section we explain how lfind produces these results.

2.2 Approach
As mentioned in Section 1, the generality of our setting induces several technical challenges. Lemma
synthesis in lfind has four steps that are targeted at these challenges, as shown in Figure 4. We
start by generalizing the goal state, in order to systematically introduce new variables that can
be used in candidate lemmas. From each generalization, we create sketches and sample variable
valuations from the current goal in order to reduce lemma synthesis to data-driven program
synthesis. Finally, we filter the resulting lemma candidates to remove those that cannot be useful
and rank and categorize the remaining candidates for user inspection.

Generalization. To begin, we produce all generalizations of the goal at the point where lfind
is invoked, which are formed by replacing one or more terms within the goal with fresh vari-
ables [Kaufmann and Moore 1997]. In our example, there are six non-variable terms in the goal
(Figure 2). While in principle there are 26 possible generalizations using these terms, there are only
16 unique ones, since some terms are only present as subterms of other ones.

For example, replacing rev l with a fresh variable l1 of type lst produces the following
generalization:
forall l n l1, rev (app l1 (Cons n Nil)) = Cons n l.

Alone, this generalization does not produce a valid lemma, as it does not hold when l1 is not the
reverse of l. Typically generalization is only applied on terms that appear more than once in a
goal [Kaufmann and Moore 1997], to avoid these cases. In our example, there are no such terms,
and in fact, all lemmas generated by generalization alone are easily disprovable.

5

ACM SIGPLAN Conference on Programming Languages, ,

Stuck
Goal

Generalize Synthesize

Candidate
Lemmas

FilterRank

lfind

Fig. 4. Overview of lfind.

Nonetheless, these generalizations play a crucial role in our approach. In addition to being treated
as candidate lemmas themselves, we use each generalization as a starting point from which to
produce many more candidate lemmas via data-driven program synthesis. Each generalization
introduces new variables that can be leveraged as part of that synthesis process.

Synthesis. From each generalization, we create a set of sketches, where each sketch is a version
of that generalization with one term replaced by a hole. For example, if we replace the term Cons n
l in the generalization above with a hole, then we end up with the following sketch (note that we
remove variable l from the quantifier since it is no longer used):
forall l1 n, rev (app l1 (Cons n Nil)) = □.

Intuitively, we would like the expression that fills the hole to behave consistently with the
expression that it is replacing. To that end, we generate concrete examples of the original goal
in the stuck state and then map them to input-output examples for data-driven synthesis. In our
running example, the original goal has two variables, l and n, so suppose we randomly generate
the following (l, n) pairs (using regular list notation for clarity):

{([], 4), ([0; 1], 2), ([2; 1], 1)}.
Next we map these examples to our sketch. We do so by leveraging the fact that the new variable

l1 replaced rev l from the original goal. Hence we evaluate rev l for each of our three examples
to produce the following l1 values: {[], [1; 0], [1; 2]}. Similarly, we produce the expected value
of the hole for each example, by leveraging the fact that the hole replaced Cons n l. This yields the
values {[4], [2; 0; 1], [1; 2; 1]}.

As a result of this mapping, we can now produce a set of input-output examples that act as a
specification for synthesis, each mapping (l1, n) pairs to the expected output value of the term to
be synthesized:
([], 4) ↦→ [4]
([1; 0], 2) ↦→ [2; 0; 1]
([1; 2], 1) ↦→ [1; 2; 1]

Finally, we pass these input-output examples to a data-driven synthesizer. In addition to the
examples, we provide the type of the function to be synthesized (which in this case is lst *
nat → lst) and a grammar to use for term generation. lfind automatically creates a grammar
consisting of the definitions that appear in the stuck proof state along with definitions that they
recursively depend upon. In our example the grammar includes the constructors Nil and Cons and
the functions app and rev. One term that the synthesizer generates from these inputs is Cons n
(rev l1). Substituting this expression into the hole in our sketch yields exactly the lemma lem1
shown earlier, which enables a fully automated proof of the original lemma.

6

Data-Driven Lemma Synthesis for Interactive Proofs ACM SIGPLAN Conference on Programming Languages, ,

In summary, we have shown how to generate candidate lemmas in a targeted way, based on the
current proof state, using a novel combination of generalization and data-driven program synthesis.
While the expressions that are generated by synthesis can make use of a general grammar, the form
of the lemmas that we generate are still limited to the structure of the sketches that we produce.
As we demonstrate in §5, our approach can generate useful lemmas for a variety of interesting
benchmarks.

Filtering. As described above, our approach induces many generalizations of each goal, multiple
sketches for each generalization, and multiple synthesis results for filling each sketch’s hole. Hence,
the set of candidate lemmas that are generated is quite large. In our running example, with default
settings for the number of sketches to produce for each generalization and the number of synthesis
results to produce for each sketch (see Section 5.2), lfind generates 276 candidate lemmas. While
the ability to explore a large space of candidates is a strength of the approach, we must organize
these candidates in a manner that is understandable and beneficial to users.

To that end, we filter out extraneous candidates in multiple ways. First, we filter out candidates for
which we can find a counterexample; we search for counterexamples usingQuickchick, an existing
counterexample-generating tool [Paraskevopoulou et al. 2015]. Second, we filter out candidates
representing trivial facts, for example forall l, rev l = rev l. We identify such cases using
Coq’s trivial tactic.

Finally, we filter out candidates that "follow directly" from the user’s original lemma, a notion we
explore in more detail in 3.4. For instance, in our running example one candidate lemma is forall
n l, rev (rev (Cons n l)) = Cons n l, which is a special case of the original rev_rev lemma
and hence is discarded in this step.

Ranking. After filtering, there are 21 candidate lemmas remaining in our running example. While
that constitutes a 92.4% reduction, it is still too many candidates to require the user to examine.
Hence, we rank candidates based on their likely utility to the user and present them in ranked
order. Since ultimately the utility of a lemma is based on whether it allows the user to prove the
original goal, our ranking leverages a state-of-the-art automatic prover for Coq, Proverbot9001,
which searches the space of Coq tactics to try to prove a given goal [Sanchez-Stern et al. 2020].

Specifically, we use the automatic prover to partition the candidate lemmas into the three groups
introduced in Section 2.1: Λ1 lemmas that are automatically provable and enable automatic proof
of the user’s stuck proof state; Λ2 lemmas that are not automatically provable but enable automatic
proof of the user’s stuck proof state; and the remaining Λ3 lemmas. Next, we sort each group
in order of size from least to greatest, since we expect smaller lemmas to be easier for users to
understand and evaluate. Finally, we concatenate these sorted groups to form the final ranked list.
In our running example, there are 2, 2, and 17 lemmas respectively in each of these three

categories. The first lemma in category Λ1, which yields a fully automated proof, is lem1 shown
earlier, so it is ranked first. Lemmas lem2 and lem3 are the smallest lemmas in category Λ2 and
hence are ranked next in our results.

3 ALGORITHMS
In this section we formally describe the core algorithms that make up our approach.

3.1 Preliminaries
Our approach synthesizes lemmas for a given proof state Ψ, which is a tuple ⟨H , 𝑔, Γ,D⟩, where
H is a set of logical formulas that are the current hypotheses, 𝑔 is a logical formula that is the
current goal, Γ is a type environment for all free variables in H and 𝑔, and D is a set of type
and term definitions that are recursively referred to in H and 𝑔. We require that the goal 𝑔 be

7

ACM SIGPLAN Conference on Programming Languages, ,

unquantified, which in practice typically means that the original lemma/theorem should have all
variables universally quantified at the front.

We use 𝜙 to denote logical formulas, 𝑥 for variables, 𝑣 for values, 𝑡 for terms of sort Type, and 𝜏 for
the types of terms. A sample for a proof state Ψ = ⟨H , 𝑔, ⟨𝑥1 : 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛⟩,D⟩ is an environment
𝑒 = ⟨𝑥1 : 𝑣1, . . . , 𝑥𝑛 : 𝑣𝑛⟩ such that 𝑒 is a model of H → 𝑔, denoted 𝑒 ⊨D H → 𝑔. We also use the
notation 𝑡 ⇓𝑒 𝑣 to denote the evaluation of term 𝑡 to value 𝑣 under environment 𝑒 .

Finally, we assume the existence of several black-box functions that have been created by others
in prior work.We assume the availability of a black-box synthesizer that takes as input a grammar G ,
consisting of typed constants and functions; a type signature 𝜏1 → 𝜏2; and input-output examples of
the form (𝑣1, 𝑣2), where 𝑣1 has type 𝜏1 and 𝑣2 has type 𝜏2. This synthesizer returns a list of functions
𝑓 of type 𝜏1 → 𝜏2 in the grammar G such that 𝑓 (𝑣1) = 𝑣2 for all examples; or it fails after some time
limit. We also assume the existence of a function Sample(Ψ) that produces a set of samples. Last,
we assume the existence of both automated theorem provers and disprovers. A prover R(𝜙, 𝜙,D)
attempts to prove a given formula in the context of a set of auxiliary lemmas 𝜙 as well as a set
of definitions, returning either Valid or Dont Know. A disprover C(𝜙,D) searches for concrete
counterexamples to 𝜙 and returns either Invalid or Don’t Know.

3.2 Lemma Synthesis
First, we describe how we reduce lemma synthesis to data-driven program synthesis. As described
in the previous section, the first step is to produce generalizations of the current goal 𝑔, by replacing
some set of terms in 𝑔 with fresh variables. The following definition formalizes this notion of
generalization.

Definition 3.1. (Generalization: G) Given a goal 𝑔, a type environment Γ, and a set T = {𝑡1, . . . , 𝑡𝑛},
we define the generalization of 𝑔 with respect to Γ and T, denoted G(𝑔, Γ,T), as the tuple ⟨𝑔′, Σ⟩,
where Σ = ⟨𝑥1 ↦→ 𝑡1, ..., 𝑥𝑛 ↦→ 𝑡𝑛⟩ records the mapping from each new variable to the term that it
replaces, variables 𝑥1, . . . , 𝑥𝑛 are not in the domain of Γ, and 𝑔′ = 𝑔[𝑡𝑖 ↦→ 𝑥𝑖].

lfind uses the generalizations that it constructs as candidate lemmas. In addition, generalizations
are used as the basis for creating sketches for data-driven synthesis. Each sketch is simply a version
of a generalized goal that has one term replaced by a hole, denoted □.

Definition 3.2. (Sketch: S) A sketch of goal 𝑔 with respect to term 𝑡 , denoted S(𝑔, 𝑡), is 𝑔[𝑡 ↦→ □].
In order to produce a data-driven program synthesis problem, we must generate input-output

examples. The following definition shows how we extend an environment to an input-output
example, given a set of terms (which are used for generalization), and a term (used for creating a
sketch). Intuitively, the new variables created by generalization become additional input variables,
and the term used to create a sketch defines the expected output.

Definition 3.3. (Input-output example: IO) The input-output example corresponding to a given
environment 𝑒 = ⟨𝑥1 ↦→ 𝑣1, . . . , 𝑥𝑛 ↦→ 𝑣𝑛⟩, term mapping Σ = ⟨𝑥 ′

1 ↦→ 𝑡1, ..., 𝑥
′
𝑚 ↦→ 𝑡𝑚⟩, and term 𝑡𝑠 ,

denoted IO(𝑒, Σ, 𝑡𝑠), is defined as
⟨⟨𝑥1 ↦→ 𝑣1, . . . , 𝑥𝑛 ↦→ 𝑣𝑛, 𝑥

′
1 ↦→ 𝑣 ′1, ..., 𝑥

′
𝑚 ↦→ 𝑣 ′𝑚⟩, 𝑣𝑠⟩

where 𝑡𝑖 ⇓𝑒 𝑣 ′𝑖 for each 𝑡𝑖 in 𝑡1, . . . , 𝑡𝑚 and 𝑡𝑠 ⇓𝑒 𝑣𝑠 .
Finally, we can put all of this together to specify how to reduce lemma synthesis to data-driven

program synthesis.

Definition 3.4. (Lemma synthesis as data-driven program synthesis) Given a proof state Ψ =

⟨H , 𝑔, Γ,D⟩, a set of terms T = {𝑡1, . . . , 𝑡𝑚} for generalization, and a sketch term 𝑡𝑠 , we produce

8

Data-Driven Lemma Synthesis for Interactive Proofs ACM SIGPLAN Conference on Programming Languages, ,

a data-driven program synthesis problem as follows. Let G(𝑔, Γ,T) = ⟨𝑔′, Σ⟩, where Σ = ⟨𝑥 ′
1 ↦→

𝑡1, ..., 𝑥
′
𝑚 ↦→ 𝑡𝑛⟩. Let S(𝑔′, 𝑡𝑠) = 𝑔𝑠 .

• The grammar G for synthesis is defined by the type and term definitions in D.
• Let Γ𝑠 be Γ restricted to the variables that appear free in 𝑔𝑠 . The input variables and associated
types for the function to be synthesized are Γ𝑠@⟨𝑥 ′

1 : 𝜏1, ..., 𝑥
′
𝑚 : 𝜏𝑛⟩, where Γ ⊢ 𝑡𝑖 : 𝜏𝑖 for each

𝑡1, . . . , 𝑡𝑚 .
• The output type for the function to be synthesized is 𝜏𝑠 , where Γ ⊢ 𝑡𝑠 : 𝜏𝑠 .
• The input-output examples for synthesis are produced as follows. First we generate a set
of samples Sample(Ψ) = ⟨𝑒1, . . . , 𝑒𝑝⟩ for the given proof state. Then the set of input-output
examples is ⟨IO(𝑒1, Σ, 𝑡𝑠), . . . , IO(𝑒𝑝 , Σ, 𝑡𝑠)⟩.

We invoke the synthesizer with these inputs and ask for up to 𝑘 functions (§5 reports sensitivity
analysis for 𝑘) that meet this specification. For each such function 𝑓 , with body expression 𝑡𝑓 ,
the induced candidate lemma is created by universally quantifying all free variables in the term
𝑔𝑠 [□ ↦→ 𝑡𝑓].

Above we have formalized the process of lemma candidate generation from a single set of terms to
be generalized and a single term to be used for creating a sketch. lfind performs this process many
times, for many different generalizations and many different sketch terms. Various approaches to
exploring this space are possible. lfind exhaustively explores the generalization space, producing
one generalization for each subset of terms in the goal 𝑔. For each such generalization, lfind
employs terms that have sort Type for creating sketches. There are several ways to pick a synthesis
term for a sketch, and in §5 we carry out sensitivity analysis for two natural approaches to choosing
such terms.

3.3 Filtering
The approach described so far generates a lot of candidate lemmas. If there are 𝑡 subterms in a
given goal to use for generalization,𝑚 sketches per generalization, and we ask the synthesizer for 𝑘
results, then without any filtering lfindwould produce a maximum of 2𝑡+1𝑚𝑘 candidates, including
all generalizations and the lemmas derived from them using data-driven synthesis. Exploring a
large space of candidates is advantageous, but clearly we require techniques to filter out candidates
that are not going to help the user.

We employ four different filtering techniques. First, it’s common for there to be many duplicate
lemmas. For example, it’s possible for synthesis from two different sketches to produce the same
result. It’s also possible for synthesis from a single sketch to produce syntactically distinct results
that are behaviorally equivalent. We identify and filter duplicates by applying Coq’s simpl tactic
and then comparing the results for syntactic equivalence. Second, we use the disprover C to search
for counterexamples, filtering out any candidate 𝜙 such that C(𝜙,D) = Invalid. Third, we remove
lemmas that can be solved using Coq’s trivial tactic, since they are self-evident and hence never
needed as explicit auxiliary lemmas.

Finally, we filter lemmas that “follow directly” from the original lemma, as they will not help in
proving that lemma. This is a subtle notion. For example, it is not a form of logical implication,
since if the candidate lemma is valid then any other lemma implies it. Instead, we formalize this
filter via a binary relation ⪯, which says that one lemma is an instantiation of (or equivalent to)
another, defined as follows:

Definition 3.5. (⪯-operator) Given lemmas 𝑙1 and 𝑙2, we say 𝑙1 ⪯ 𝑙2 if we can prove 𝑙1 using
either of the following proof scripts:

1 intros. apply l2. Qed.

9

ACM SIGPLAN Conference on Programming Languages, ,

2 intros. rewrite <- l2. reflexivity. Qed.
3 intros. rewrite -> l2. reflexivity. Qed.

We then filter out any candidate lemma that is ⪯ than the original lemma.

3.4 Ranking
We rank the remaining candidate lemmas using the automated prover R we introduced earlier.
For each candidate 𝜙 we use the prover to determine if the candidate can be used to automatically
prove the goal 𝑔 — R(𝑔, {H , 𝜙},D) — and whether the candidate itself is automatically provable —
R(𝜙, ∅,D). Based on the results we partition the lemmas into three groups, Λ1, Λ2, and Λ3. The Λ1
group contains the lemmas for which both calls to R return Valid, meaning that we have obtained
a fully automated proof of the user’s original goal. The Λ2 group contains the lemmas for which the
first call to R return Valid, meaning that the lemma enables the goal to be automatically proven
but the lemma is not itself automatically provable. The remaining lemmas go in the Λ3 group. We
sort the lemmas in each group in order of size from smallest to largest, since we expect smaller
lemmas to be easier for users to understand and evaluate. Finally, we concatenate these sorted
groups to form the ranked list.

3.5 Discussion
We note that lfind’s approach to candidate lemma generation imposes some important restrictions
on its usage. We have already mentioned that the goal in the proof state must be unquantified.
Further, the approach relies on the ability to generate examples for the stuck state, which limits
it to the capabilities of current test generation techniques. Because we reduce lemma synthesis
to program synthesis we require the ability to extract necessary definitions as code and translate
code back to Coq. Finally, because sketches for synthesis are derived from a generalization of the
original goal, the generated lemmas will always have the same top-level structure as the goal. For
example, if the original goal has the form A = B then the candidate lemmas will also have this
form. §5.3 shows that despite these limitations, lfind can successfully identify non-trivial helper
lemmas for a variety of examples. In addition, all of these limitations represent useful avenues of
investigation in future work.

4 IMPLEMENTATION
Figure 5 illustrates the overall architecture of lfind, which leverages three black-box components:
a data-driven synthesizer for candidate lemma generation; an automatic disprover for candidate
filtering; and an automatic prover for candidate ranking. Our implementation of lfind is 3.2 KLOC
of OCaml code.

4.1 Example Generation
To synthesize candidate lemmas, our approach relies on a Sample function that can produce samples
for the variables in the stuck state 𝑔. We leverage Quickchick [Paraskevopoulou et al. 2015], a
state-of-the-art property-based randomized tester for Coq, for this purpose. While Quickchick is
intended as a testing tool, we log all of the test inputs that it generates and use them as the samples
from which to produce examples for synthesis.
Specifically, for each user-defined type T in the stuck goal, lfind first generates the following

Coq code, which enables the usage of Quickchick for that type:
1 Derive Show for T.
2 Derive Arbitrary for T.
3 Instance Dec_Eq_T : Dec_Eq T.

10

Data-Driven Lemma Synthesis for Interactive Proofs ACM SIGPLAN Conference on Programming Languages, ,

Stuck Goal

Generalizations

Examples

QuickChick

Sketches

Synthesized
Terms

ML of CoqCoq of ML

Candidates

Filtered
Candidates

QuickChick
SerAPI

ProverBot9001

Ranked
Candidates

Myth

Fig. 5. Given a stuck goal, lfind implements generalization, synthesis, filtering and ranking in conjunction

with existing tools to generate candidate lemmas.

4 Proof. dec_eq. Qed.

The Show typeclass is required for printing test cases and the Arbitrary typeclass is required to
combine test-case generation with an operation for shrinking test inputs.Quickchick supports
automatic derivation of instances of these type classes for simple types. Quickchick also requires
that types have decidable equality, so we derive an instance of the Dec_Eq typeclass for T.
Next, to produce examples for the stuck proof state 𝑔, we create a Coq lemma for that state,

defined as Lemma stuckState: H → 𝑔. We also create a function collect_data whose input type
V is the tuple of the types of all free variables inH → 𝑔. The function logs the input values to a file
and returns the valuation of H → 𝑔 on those input values:

1 Definition collect_data (n:V) :=
2 in let _ := print_to_file (show n)
3 in stuckState n.
4 QuickChick collect_data.

Finally we run Quickchick on this function, thereby logging samples to use for data-driven
synthesis and also searching for counterexamples to the stuck proof state. If Quickchick returns
any such counterexamples, then there is no way to complete the proof so we report this to the user
and halt lfind. Otherwise we proceed with synthesis.

4.2 Synthesis
To our knowledge, there are no data-driven synthesizers that work directly for Coq. We chose
Myth [Osera and Zdancewic 2015] as our synthesizer because it accepts and generates OCaml
code, for which tools exist to convert to/from Coq’s language Gallina; it has a simple interface that
is easy to use; and it has worked well for us in the past.Myth requires an input grammar in OCaml,
so we use Coq’s Extraction feature to recursively extract reachable definitions and types from
the stuck goal to OCaml. Additionally, we adapt Myth slightly in two ways. First, Myth supports
only a subset of OCaml and does not support common syntactic sugars. For example, Myth does
not support the function keyword. To get around these limitations, we wrote a translator that
desugars the definitions extracted from Coq into a form acceptable by Myth. Second, we modified
Myth to return a set of candidate functions sorted by size, instead of just one. This enables the
generation of multiple candidate lemmas as described earlier. Finally, to substitute the synthesized
OCaml function body back into our lemma sketch, we use an open-source tool, coq-of-ocaml [coq
2003].

11

ACM SIGPLAN Conference on Programming Languages, ,

4.3 Filtering and Ranking
In §3.3, we described multiple filters to remove extraneous candidate lemmas. To implement these
filters, we declare each candidate as a Coq lemma and use Quickchick to remove lemmas that
have counterexamples. The remaining filters are implemented by running proof tactics using
SerAPI [Gallego Arias et al. 2020], a library for machine-to-machine interaction with Coq. To rank
the filtered lemmas, we use Proverbot9001 [Sanchez-Stern et al. 2020], a state-of-the-art proof-
synthesis tool that uses machine learning to produce proofs of Coq theorems. Proverbot9001 takes
as input definitions, a theorem that needs to be proven, and a set of axioms that can be assumed,
and returns a proof script or Don’t Know.

4.4 Discussion
In our implementation, we try to disprove each generalization eagerly, and we only carry out
synthesis from generalizations for which the disprover finds a counterexample. Intuitively, if a
generalization is not disprovable then it is itself a candidate lemma, and so we would rather spend
our synthesis resources elsewhere. Candidate lemmas are produced incrementally, as generalization
and synthesis proceed. Hence the algorithm is any-time: we can stop at any point, collect up the
current set of candidates, and filter and rank them. Furthermore, we stop synthesis as soon as we
get a category Λ1 lemma since we will have a fully automated proof of the user’s original goal.

Our implementation inherits the limitations of the black-box tools we rely on. Notably,Myth only
supports a small subset of OCaml. As described above, we mitigate this limitation by implementing
a translator, but this is not a solution that works for the full OCaml language, and so in some cases
lfind can fail to produce code that Myth accepts. Myth also does not support polymorphic types.

5 EXPERIMENTAL RESULTS
In this section we perform experiments to answer the following research questions:
RQ1. (§5.3) How effective is lfind in synthesizing useful helper lemmas? How fast can the tool
synthesize these helper lemmas? What is the impact of its filtering and ranking techniques?
RQ2. (§5.4) How does lfind’s data-driven approach compare in effectiveness to prior approaches
to lemma synthesis?
RQ3. (§5.5) How sensitive is lfind to hyperparameters and timeouts?

5.1 Benchmark Suite
Our approach generates candidate helper lemmas from a given proof context, and our tool is
implemented as a tactic. Hence, to evaluate lfind we need to invoke lfind at each point in
the proofs where a user-provided helper lemma was used. These are called evaluation locations.
Concretely, a proof state is an evaluation location if a human prover has used either the apply
or rewrite tactics with a helper lemma that they created. We evaluate lfind on a total of 222
evaluation locations. These benchmark locations are drawn from the following sources.

• CLAM (140): This benchmark suite consists of 86 theorems about natural numbers as well as
various data structures, including lists, queues, and trees, and it has been used to evaluate prior
forms of lemma synthesis [Ireland and Bundy 1996; Yang et al. 2019]. These benchmarks lack
associated proofs, so we converted them to Coq and manually proved each theorem (more
details on this process below). Out of the 86 clam theorems, 67 require at least one helper
lemma, with many requiring multiple lemmas. In total, the clam suite contains 184 unique
evaluation locations that employ a helper lemma. Implementation limitations mentioned in
§4.4 preclude 44 locations from clam from being used for evaluation, leaving 140 remaining
evaluation locations.

12

Data-Driven Lemma Synthesis for Interactive Proofs ACM SIGPLAN Conference on Programming Languages, ,

Table 1. Results

CLAM Full Adder Compiler LIA

Setup
Theorems 86 40 1 9
Evaluation Locations 140 62 1 19

Results
fully proven lemma and goal 68 34 0 7
else human match in top 1 14 0 1 0
else human match in top 5 9 1 0 3
else human match in top 10 6 0 0 0
else more general than human lemma in top 1 1 0 0 0
Summary 98/140 35/62 1/1 10/19

• Full Adder (62): This project [cir 1995] from the coq-contribs collection formalizes a full adder
and proves it correct [cir 1995]. The program first builds a half-adder circuit (which takes two
binary digits, and outputs two binary digits) and proves properties about it. Then the half-adder
circuit is used to build a full-adder circuit (which takes two binary digits, plus a “carry” digit,
and outputs two binary digits). Finally, the program chains together a sequence of full adders to
create an adder circuit, which is proven correct. All of the 40 theorems in this project require at
least one helper lemma, and the project contains 62 evaluation locations in total.

• Compiler (1): This benchmark is the compiler example from Chapter 2 of Chlipala’s CPDT
textbook [Chlipala 2013], which is a certified compiler from a source language of expressions
to a target language of a stack machine. The final theorem formalizes the correctness of the
compiler. This benchmark contains one theorem, which uses one helper lemma, which is the
evaluation location. Though it contains only a single evaluation location, we chose this example
as a benchmark because it showcases a different application and the required helper lemma is
relatively large and complex.

• LIA (19): This benchmark suite consists of 9 theorems about data structures that require linear
integer arithmetic, from a prior work on lemma synthesis for fully automated proofs about data
structures (see Table 1 in [Yang et al. 2019]). As with the CLAM benchmarks, we converted
them to Coq and manually proved each theorem. Each proof requires at least one helper lemma,
and there are a total of 19 evaluation locations.

The Full Adder and Compiler benchmark suites already contain full Coq proofs written by
others, which in turn determine our evaluation locations. The theorems in the CLAM and LIA

benchmark suites lack proofs, so each theorem was manually proven by one of three of us, with
varying experience from novice to expert in interactive theorem proving. Specifically, one person
had only done a small class project with Coq previously, one has been using Coq for the past few
years on a research project, and one has used it on and off for a decade. The proofs were completed
independently of lfind’s evaluation, and helper lemmas were used wherever the human prover
deemed necessary. In § 5.4, we show that the vast majority of these helper lemmas are indeed
necessary, in the sense that a state-of-the-art automated prover cannot complete the proof of the
theorem without a helper lemma. We have provided all the benchmarks as part of the anonymous
supplementary material.

5.2 Experimental Setup
For each evaluation location, lfind generates 50 input-output examples from the current proof
state and is allowed to generate candidate lemmas with a maximum timeout of 100 minutes. Despite

13

ACM SIGPLAN Conference on Programming Languages, ,

the large search space, in § 5.3 we show that the tool is performant with a median runtime of
only 4.8 min. The tool has a 12s timeout for each call Myth and a 15s timeout for each call to
Proverbot9001. In addition to the timeout parameters, two key hyperparameters to our algorithm
are the choice of subterms to use for generating sketches and the number of synthesis results 𝑘 to
obtain per sketch. In our experiments, we generate sketches from all subterms of sort Type, and
we ask for 5 synthesis terms per sketch. Empirically we have found these choices to provide good
results, but we also present a sensitivity analysis of other choices for timeout and hyperparameters
in §5.5.

All evaluations were performed on a machine that runs MacOS (10.15.6) in a 2.3 GHz-Quad-Core
Intel Core i7, with 32GB memory.

5.3 Synthesized Helper Lemmas
Table 1 summarizes the results for all our benchmarks. We consider the use of lfind at an evaluation
location to be successful in three scenarios. First, we say that lfind is successful if it can produce a
candidate helper lemma that is automatically proven by Proverbot9001 and this helper lemma
enables Proverbot9001 to automatically prove the user’s goal. This is the best-case scenario, as
lfind has produced a complete proof for the user. Second, we say that lfind is successful if a
lemma that matches the human-provided lemma is ranked highly (top-10) by the tool. Third, we say
that lfind is successful if a lemma that is more general than the human-provided lemma is ranked
highly by the tool. We use the ⪯ operator defined in §3.3 to automatically identify if a candidate
lemma 𝑙 matches or is more general than the human-provided lemma ℎ. Specifically we say that 𝑙
matches ℎ if both 𝑙 ⪯ ℎ and ℎ ⪯ 𝑙 , and we say that 𝑙 is more general than ℎ if ℎ ⪯ 𝑙 but not vice versa.
These are reasonable success metrics for our tool, as we expect versions of the human-provided
lemma to be "natural" for people to understand, and also we know that the human-provided lemma
does indeed lead to a full proof of the goal. Note however that the metrics are conservative, as there
could be other lemmas produced by lfind that are natural and appropriate but do not fall into one
of the above three categories.
In total, based on our evaluation metrics we see that lfind succeeds in 144 (64.9%) of the 222

evaluation locations across all benchmarks. Further, as shown in the third row of the table, in
109 (75.7%) of these successful 144 locations, lfind was able to synthesize a lemma that led to a
fully automated proof of the user’s goal. Rows 4-7 of Table 1 show a breakdown of the remaining
35 successful locations. Notably, for 15 of these evaluation locations, the top-ranked candidate
lemma produced by lfind matches the helper lemma provided by the human prover. These results
demonstrate the effectiveness of our filtering and ranking strategies in surfacing relevant lemmas
toward the top, and often as the top result.

Examples. Table 2 shows examples of lemmas synthesized by lfind along with their rank and
category (see §3.4 for category notations). We describe the first four of them in detail.
The first example from the Compiler benchmark formalizes the correctness of a compiler from

a source language of expressions to a target language of a stack machine. In this case, type exp
defines the source language of arithmetic expressions. evalExp function evaluates the programs in
this language. The target language’s instructions are of type instr, which are executed on a stack
machine. The function execI takes an instruction and a stack (represented as a list of nats) and
returns an updated stack, and execIs uses this function to execute a list of instructions. Finally,
the compiler function translates source programs to a list of instructions. The theorem itself is
not inductive, necessitating an inductive helper lemma that implies the theorem [Chlipala 2013].
lfind was not able to identify a helper lemma that leads to a fully automated proof of the theorem.
However, it produces candidate lemmas in categories Λ2 and Λ3, and the top-ranked candidate

14

Data-Driven Lemma Synthesis for Interactive Proofs ACM SIGPLAN Conference on Programming Languages, ,

Table 2. A sample of lfind synthesized lemmas and their associated rank and category.

Original Theorem lfind Synthesized Lemma Λ

1. Theorem correct_compilation:∀ (e
:exp), execIs (compile e) Nil =
(evalExp e) :: Nil.

Lemma lem1:∀ (e: exp) (l: list
instr) (s: list nat), execIs
(compile e ++ l) s = execIs l
(evalExp e :: s).

Λ2

2. Theorem BV_full_adder_nil_ok :∀
(v:BoolList) (cin:bool), BV_to_nat
(BV_full_adder v Nil cin) =
BV_to_nat v + Bool_to_nat cin.

Lemma lem1:∀ (l:BoolList), BV_to_nat
(BV_full_adder_sum l Nil false
++ BV_full_adder_carry l Nil
false::Nil) = BV_to_nat l.

Λ1

3. Theorem app_revflat:∀ (x:tree)
(y:list nat), (revflat x) ++ y =
qrevaflat x y.

Lemma lem10:∀ (l l1 l2:list nat), (l
++ l1) ++ l2 = l ++ (l1 ++ l2).

Λ3

4. Theorem queue_push:∀ (q:queue)
(n:nat), qlen (qpush q n) = 1 +
(qlen q).

Lemma lem1:∀ (l l1:list nat), len l
+ len l1 = len (l ++ rev l1).

Λ2

5. Theorem qreva_qreva:∀ (x:list nat),
(qreva (qreva x Nil) Nil) = x.

Lemma lem9:∀ (n:nat) (l:list nat),
qreva (append l n::Nil) Nil =
n::(qreva l Nil).

Λ2

6. Theorem rotate_len:∀ (x:list nat),
rotate (len x) x = x.

Lemma lem2:∀ (l l1:list nat), rotate
(len l) l ++ l1 = l1 ++ l.

Λ2

7. Theorem add_even:∀ (x y:nat),
even(x+y) = even(y+x).

Lemma lem1:∀ (n x:nat), negb
(even(n+x)) = even(n+(S x)).

Λ1

8. Theorem drop_elem:∀ (v w x y:nat)
(z:list nat), drop (S v) (drop w
(drop x y::z)) = drop v (drop w
(drop x z)).

Lemma lem1:∀ (n x:nat) (l:list nat),
drop (S x) (drop n l) = drop x (drop
(S n) l)).

Λ1

in category Λ2, shown in the table, exactly matches the human-provided lemma. The lemma is
non-trivial as it involves multiple calls to execIs, an arbitrary list of stack instructions l1, and an
arbitrary stack l2.

The second example is from the full adder benchmark. The theorem says that if we convert to
a natural number the result of adding a binary number, we get the same natural number we would
if we converted that input to a natural number. We present a synthesized helper lemma in table 2,
which belongs to category Λ1 and hence led to a full proof of the theorem.

The third example in the table is from the clam benchmark suite and proves the equivalence of
two functions for converting a binary tree into a list. For this example, lfind produced candidate
helper lemmas in both categories Λ2 and Λ3. The tenth-ranked candidate, shown in the table,
matches the human-provided lemma.

The fourth example in the table is from the lia benchmark suite and reasons about how pushing
onto a queue affect its length. This is a case in which our evaluation does not deem lfind to have
succeeded, since it does not produce a fully automated proof and does not produce a match for
the human-provided lemma in the top ten results. However, the top-ranked result, shown in the
figure, is very close to the human-provided lemma, which simply replaces the term (rev l1) with

15

ACM SIGPLAN Conference on Programming Languages, ,

25 50 75 100 125
Runtime (minutes)

0.00
0.25
0.50
0.75
1.00

Cu
m

ul
at

iv
e

Di
st

rib
ut

io
n

Fu
nc

tio
n

(C
DF

)

Time to Category 1
Total Time

Fig. 6. lfind has a median total runtime of 4.8 min. Further, the tool has a median runtime of 1.2 min for the

109 cases (see table 1) where it was able to a find a full automated proof (Λ1).

l1. Further, this lemma is itself equally useful in completing the proof, despite being slightly more
complex.

Runtime Performance. Figure 6 plots the runtime distribution of lfind across all 222 evaluation
locations. The tool ran to completion on each of these benchmarks with a median runtime of 4.8 min
(shown in the plot where the curve labeled Total Time reaches a CDF of 0.50). Recall that lfind
produces a full automated proof (category Λ1) in 75.7% (see Table 1) of the successful evaluation
locations. As shown by the curve labeled Time to Category 1 in Figure 6, the median and 75th
percentile runtime of the tool were only 1.2 min and 3.8 min respectively. These runtimes indicate
the viability of our approach and its instantiation in lfind to support interactive usage.

Impact of Filtering and Ranking. Figure 7 provides a detailed view of how many candidate
lemmas were generated and filtered, for the results presented in Table 1. As explained in §3.3, our
approach indeed generates a lot of candidate lemmas. For example, lfind generates a median of 168
candidate lemmas for each evaluation location from the benchmarks (shown where the solid curve
reaches a CDF of 0.50). However, our filtering techniques are very effective in removing useless
lemmas. As mentioned in §4, we filter Invalid candidates (labeled Filter 1 in the figure) as we
generate candidate lemmas. We then filter lemmas (labeled Filter 2) that are either syntactically
similar to each other, or trivial, or restatements or special versions of the theorem statement. After
Filter 1, the median number of lemmas is reduced to 112. Further, after Filter 2 there is a median
of 17 candidate lemmas. Hence on average, Filter 1 reduced the candidate lemmas by 33.3%, and
Filter 2 reduced the remaining candidates by 84.8%.

Finally, as mentioned above even after filtering we are left with a median of 17 lemmas for each
benchmark suite. This highlights the importance of our ranking strategy, which was already shown
to be effective in the results of Table 1.

5.4 Comparison with Other Approaches
In order to understand how our approach compares with other approaches to lemma synthesis, we
performed an ablation study in which we compare lfind against versions of it that have certain
features disabled. First, we compare against a version of the tool that generates no lemmas, instead
simply using a state-of-the-art automated prover to try to complete the proof from the evaluation
location (proof context). Second, we compare against a version of lfind that only generates
candidate lemmas through generalization, without performing any synthesis. This version of the
tool allows us to compare against the commonly used generalization technique [Boyer and Moore
1979; Kaufmann and Moore 1997]. Finally, we compare against a version of lfind that is identical
to the original version except that it provides no examples to Myth for synthesis. This change has

16

Data-Driven Lemma Synthesis for Interactive Proofs ACM SIGPLAN Conference on Programming Languages, ,

0 1000 2000 3000
Lemmas

0.00
0.25
0.50
0.75
1.00

CD
F # Generated

After filter 1
After filter 2

Fig. 7. lfind reduces the number of lemmas by 89.9% on average after application of both filters.

the effect of forcing Myth to do type-guided synthesis, thereby providing a closer comparison with
the term enumeration approach to lemma synthesis [Claessen et al. 2013; Yang et al. 2019].

No Synthesis. In this study, we ran Proverbot9001 on each evaluation location across all bench-
marks, without providing any synthesized lemma from lfind. Proverbot9001 can automatically
prove only 22.1% of the evaluation locations. In contrast, with a lemma synthesized by lfind,
Proverbot9001 can automatically prove 49.1% of the evaluation locations (109 out of 222), and
as shown earlier overall lfind provides a useful lemma in 64.9% of the cases. This experiment
highlights the need for lemma synthesis and shows how our work complements existing work
on automated proofs. These results also serve as a measure of the quality of the human proofs, as
the human-provided lemmas are required in the vast majority of cases. Situations where a lemma
is used but not needed could arise due to the inexperience of the human prover or simply for
readability purposes.

Generalization. For this comparison, we disable lfind’s synthesis process, soMyth is not used
at all, but all other parts of lfind work as described earlier. This version of lfind can be seen as a
best-case version of the generalization technique [Boyer and Moore 1979; Kaufmann and Moore
1997], since we exhaustively consider all possible generalizations, while in prior tools typically only
one or a small number of generalizations are heuristically chosen [Chamarthi et al. 2011; Yang et al.
2019]. According to our success metrics defined in §5.3, a generalization is deemed useful in only
19.4% of all evaluation locations, as compared with 64.9% of locations for lfind.

Type-guided Synthesis. For this comparison, we use a version of lfind that does not provide any
examples to Myth whenever it is invoked, but is otherwise identical to lfind. Without examples,
all terms of the desired type will be considered by Myth to meet the given specification, so the
effect is thatMyth will perform a type-guided synthesis through the given grammar, Hence this
version of lfind is related to the enumeration techniques from prior work on lemma synthesis, like
HipSpec [Claessen et al. 2013] and AdtInd [Yang et al. 2019]. This version synthesizes a successful
helper lemma according to our success metric in 67 evaluation locations, whereas lfind does so in
109 evaluation locations. Note that these results exclude cases where generalization produces the
useful lemma for an evaluation location, since the two versions of lfind are identical in those cases.
These results demonstrate the benefits of data-driven synthesis: the examples act as a specification
that allows for early filtering of candidate lemmas, which in turn enables the synthesizer to provide
higher-quality candidates.

17

ACM SIGPLAN Conference on Programming Languages, ,

5.5 Sensitivity
As described in §3, lfind has two hyperparameters: (1) number of synthesis results per sketch,
and (2) which terms to select for generating sketches. Further, as described in § 4, lfind uses
Proverbot9001 to rank candidate lemmas and theMyth synthesis engine for term generation. We
limit the time spent on each of these tools to efficiently search over the large space of candidate
lemmas using available resources. We carry out four separate experiments on the largest benchmark
suite (clam, with 140 evaluation locations) to understand lfind’s sensitivity to each of these
parameters. To quantify the sensitivity of a parameter, in each experiment we vary one parameter
while fixing all others.

20 40 60 80
Runtime (minutes)

0.00
0.25
0.50
0.75
1.00

CD
F Top 5

Top 15
Top 25

Fig. 8. Total runtime of lfind increases when increas-

ing number of synthesis terms per sketch. Runtime

almost doubles when 𝑘 increases from 5 to 15, while it

is 1.3x more when it is increases from 15 to 25.

Number of Synthesis Terms. In the first
experiment, we vary the number of synthesis
results (𝑘) that we ask of Myth per sketch. We
generate sketches from maximal subterms, and
use 10s and 12s timeout for Proverbot9001
andMyth respectively. We study the sensitiv-
ity to this parameter by varying 𝑘 to be 5, 15,
and 25. Respectively for these settings, lfind
is successful in 85, 89, and 80 clam evaluation
locations. There is a modest 4.7% increase in
effectiveness from 𝑘 = 5 to 𝑘 = 15, since there
is a large search space of candidate lemmas as 𝑘
increases. However, there is a significant drop

in effectiveness from 𝑘 = 15 to 𝑘 = 25 — as the search space increases, the useful candidates can
more easily fail to be highly ranked. Figure 8 plots the total runtime for different 𝑘 values, and as
expected, the median total time increases with increasing 𝑘 . Median total time of 𝑘 = 5 is 4.4 min
(labeled Top 5), while it is 8.0 min and 10.9 min for 𝑘 = 15 and 𝑘 = 25 respectively (labeled Top 15,
Top 25). We pick 𝑘 = 5 as the optimal number of synthesis terms for the remaining experiments,
since the increase to 𝑘 = 15 has a large time cost and only a modest effectiveness benefit.

20 40 60 80 100
Runtime (minutes)

0.00
0.25
0.50
0.75
1.00

CD
F

10 seconds
15 seconds

Fig. 9. Median runtime of lfind decreases with an

increase in Proverbot9001 timeout. While this is unin-

tuitive, this is because the prover is allocated more time

per call, enabling it to prove a candidate lemma ear-

lier, which was otherwise not provable using a smaller

timeout.

Proverbot Timeout. In the second experi-
ment, we vary Proverbot9001 timeout to be
5s, 10s, and 15s, setting 𝑘 = 5 and keeping other
parameters similar to the previous experiment.
Respectively for these settings, lfind is success-
ful in 50, 85, and 94 clam evaluation locations.
The tool performs poorly with a 5s timeout,
since Proverbot9001 spends the first few sec-
onds in setup, leaving too little time for the
actual proof search. Figure 9 plots the runtimes
for the 10s and 15s timeout cases. Median total
runtime for 10s (labeled 10 seconds) is 4.4 min,
while it is only 3.4 min for 15 seconds (labeled
15 seconds). It is perhaps unintuitive that allow-
ing Proverbot9001 more time leads to lower

time overall, but the additional time for Proverbot9001 can allow it to complete a proof that would
otherwise not be possible, thereby finding a category Λ1 lemma sooner. Therefore, we pick 15s as
the optimal timeout parameter for Proverbot9001 in the remaining experiments.

18

Data-Driven Lemma Synthesis for Interactive Proofs ACM SIGPLAN Conference on Programming Languages, ,

20 40 60 80 100
Runtime (minutes)

0.00
0.25
0.50
0.75
1.00

CD
F 8 seconds

12 seconds
16 seconds

Fig. 10. Median runtime of lfind is unaffected when

increasingMyth timeout.

Myth Timeout. The third experiment varies
the Myth timeout to be 8s, 12s, and 16s, updat-
ing Proverbot9001 timeout to 15s and keeping
other parameters similar to the second exper-
iment. Respectively for these settings, lfind
is successful in 87, 94 and 94 clam evaluation
locations. Figure 10 plots the total runtime for
these timeout values. Despite increasing time-
outs, the total runtime is very similar among
the three settings, with a median timeout of 3.1
min, 3.4 min, and 3.5 min for 8s, 12s, and 16s respectively. Therefore, we pick 12s as the optimal
timeout parameter for Myth.

20 40 60 80 100
Runtime (minutes)

0.00
0.25
0.50
0.75
1.00

CD
F

Maximal terms
All possible terms

Fig. 11. There is a modest increase in median runtime

of lfind from 3.4 min to 4.5 min when generating syn-

thesis sketches from maximal terms compared to all

terms.

Sketch Generation. In this final experiment,
we explore two choices for sketch generation,
using the optimal choices for other parameters
based on the previous experiments. We gener-
ate synthesis sketches from (1) all subterms of
sort Type or (2) only from maximal subterms of
sort Type. To make the use of maximal terms
more feasible, for that setting we also use a
heuristic that requires the synthesized expres-
sion to refer to all generalized variables from
the sketch. The use of all terms is successful in
98 evaluation locations while the use of maxi-
mal terms is successful in 94 locations. Figure 11
plots the total runtime for these settings, and as expected, the total runtime is more when generating
sketches from all subterms compared to only maximal subterms. However, the difference in the
median runtime is only one minute. Therefore, we pick all subterms as the optimal parameter for
sketch generation.

6 RELATEDWORK
6.1 Lemma Synthesis
As described in §1, there are a variety of existing approaches to lemma synthesis, and they broadly
fall into two categories. Many techniques perform rewrites on the target theorem or the current
proof state, in order to identify stronger induction hypotheses and helper lemmas. Most common
among these is the generalization technique [Aubin 1976; Boyer and Moore 1979; Castaing 1985;
Dixon and Fleuriot 2003; Hesketh 1992; Hummel 1990; Kaufmann and Moore 1997], whereby
selected terms are replaced by fresh variables. Other works go beyond generalizing variables to a
broader set of rewrites [Bundy et al. 1993; Johansson et al. 2010; Kapur and Subramaniam 1996;
Sonnex et al. 2012]. For example, the rippling technique [Bundy et al. 1993] employs a set of rewrite
rules in order to make the current goal match the induction hypothesis.

The other category synthesizes candidate lemmas from a grammar using bottom-up enumeration.
QuickSpec [Claessen et al. 2010] employs this approach and filters candidates by searching for
counterexamples [Claessen and Hughes 2000]. HipSpec [Claessen et al. 2013] combines QuickSpec
with an automated prover in order to synthesize a set of provably correct lemmas. A similar
enumerate-and-filter strategy is used to automate induction in the CVC4 solver [Reynolds and
Kuncak 2015]. Finally, AdtInd [Yang et al. 2019] employs bottom-up enumeration in order to search

19

ACM SIGPLAN Conference on Programming Languages, ,

for candidate lemmas in the context of an automated prover for abstract datatypes. Notably, like
lfind, AdtInd leverages both generalization and sketches (which they call templates) for synthesis,
but it is unclear how generalizations are chosen and the sketches are user-provided.

lfind’s key innovation over these prior works is showing how to reduce the problem of lemma
synthesis to a form of data-driven program synthesis. Versus the first category of approaches,
lfind explores a wider space of potential lemmas via grammar-based synthesis and can leverage
off-the-shelf program synthesizers. Versus the second category of approaches, lfind generates
candidates that are directly targeted toward the current goal, which is critical in an interactive
setting. However, our approach borrows several techniques from these prior works. First, lfind
also employs generalization, but it is used not only to directly produce candidate lemmas but also
as the basis for producing sketches for program synthesis. Second, lfind employs counterexample
search to filter candidates, which has been previously used for filtering in both of the earlier
approaches [Chamarthi et al. 2011; Claessen et al. 2010]. Third, lfind also employs automated
provers, though due to the interactive setting we use them to rank rather than verify candidates.

6.2 Data-driven Invariant Inference
Data-driven invariant inference has been widely used for various software engineering tasks, at
least since Ernst’s dissertation on inferring likely program invariants from data [Ernst 2000]. In
this approach, data about concrete program executions is used to generate positive and/or negative
examples, and the goal is to synthesize a predicate that separates these two sets of examples.
Recently these techniques have become state of the art for automated program specification and
verification [Astorga et al. 2019; Ezudheen et al. 2018; Garg et al. 2014, 2016; Padhi et al. 2016; Zhu
et al. 2018]. For example, prior work has shown how to generate examples for data-driven synthesis
of loop invariants that are sufficient to prove that a function meets its specification [Garg et al. 2014,
2016; Padhi et al. 2016]. Closest to our work is the Hanoi tool [Miltner et al. 2020], which infers
likely representation invariants to aid users of interactive theorem provers in proving that a data
structure implementation meets its specification.

As described in Section 1, the existing data-driven verification techniques fundamentally exploit
the specific kind of invariant being targeted, which has a clear logical specification over a fixed
set of variables. This enables a natural approach based on CEGIS [Solar-Lezama 2009] for both
generating examples and verifying candidate invariants. Our setting of lemma synthesis is more
general and poses a challenge for data-driven inference, as we lack both a fixed set of variables for
the lemma and clear criteria upon which to classify examples as positive or negative. Hence, we
have devised a new reduction to data-driven program synthesis: lfind produces sketches from
generalizations of the goal state and generates examples for synthesis using the heuristic that a
synthesized term should behave consistently to the term that it replaces. We have also developed
new approaches to filtering and ranking lemma candidates, to address the lack of clear success
criteria in our setting.

6.3 Automated Proofs for Interactive Theorem Provers
A variety of tools exist for automatically generating proofs in interactive settings, both in Coq
and other languages. Recent techniques use a form of machine learning, for example a neural
network, to guide a heuristic proof search, given a set of proof tactics as well as a set of existing
lemmas/theorems [Bansal et al. 2019; First et al. 2020; Gauthier et al. 2017; Huang et al. 2019; Paliwal
et al. 2020; Sanchez-Stern et al. 2020; Yang and Deng 2019]. Another class of techniques serialize
the proof context into a format for input to an external automated solver and then serialize the
resulting proof back into the interactive theorem prover [Blanchette et al. 2011; Czajka and Kaliszyk
2018; Kaliszyk and Urban 2015a,b].

20

Data-Driven Lemma Synthesis for Interactive Proofs ACM SIGPLAN Conference on Programming Languages, ,

Our contribution is orthogonal to these works, which do not perform lemma synthesis. For
example, while the machine-learning-based approaches leverage existing lemmas as part of the
proof search, they will fail if the existing lemmas are not sufficient. As we showed in §5.3, lfind can
improve the capabilities of Proverbot9001 [Sanchez-Stern et al. 2020], a state-of-the-art automated
prover for Coq based on neural networks, synthesizing lemmas that allow it to prove goals that it
otherwise could not. lfind uses Proverbot9001 to rank candidate lemmas and produce proofs for
ones that are fully automatable. However, our approach is independent of the particular prover
used and so for example could instead employ a solver-based prover like CoqHammer [Czajka and
Kaliszyk 2018] or even employ multiple provers to leverage their relative strengths.

7 CONCLUSION
In this paper, we developed a new approach to lemma synthesis for interactive proofs that is both
goal-directed and expressive. The key technical contribution is a new reduction from the general
lemma synthesis problem to a data-driven program synthesis problem. The approach leverages the
information available in a given stuck proof state in multiple ways: sampling variable valuations for
example generation, generalizing the state to systematically introduce new variables for synthesis,
and deriving synthesis sketches from the current goal. We also describe several techniques for
filtering and ranking candidate lemmas, which are critical in an interactive setting. While the
problem of lemma synthesis is hard in general, the experimental evaluation of our resulting tool
lfind demonstrates the promise of the approach and quantifies the benefits over other approaches.

REFERENCES
1995. Circuits. https://github.com/coq-contribs/circuits.
2003. Coq-of-Ocaml. https://github.com/foobar-land/coq-of-ocaml.
Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid. 2013. Recursive program synthesis. In International Conference on

Computer Aided Verification. Springer, 934–950.
Angello Astorga, P Madhusudan, Shambwaditya Saha, Shiyu Wang, and Tao Xie. 2019. Learning stateful preconditions

modulo a test generator. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation. 775–787.

R Aubin. 1976. Mechanising Structural Induction. (1976).
Kshitij Bansal, Sarah M. Loos, Markus N. Rabe, Christian Szegedy, and Stewart Wilcox. 2019. HOList: An Environment for

Machine Learning of Higher-Order Theorem Proving (extended version). CoRR abs/1904.03241 (2019). arXiv:1904.03241
http://arxiv.org/abs/1904.03241

Jasmin Christian Blanchette, Sascha Böhme, and Lawrence C. Paulson. 2011. Extending Sledgehammer with SMT Solvers. In
Automated Deduction – CADE-23, Nikolaj Bjørner and Viorica Sofronie-Stokkermans (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 116–130.

Robert S Boyer and J Strother Moore. 1979. A Computational Logic. ACM Monograph Series (1979).
Alan Bundy, Andrew Stevens, Frank Van Harmelen, Andrew Ireland, and Alan Smaill. 1993. Rippling: A heuristic for guiding

inductive proofs. Artificial intelligence 62, 2 (1993), 185–253.
Jacqueline Castaing. 1985. How to Facilitate the Proof of Theorems by Using the Induction-matching, and by Generalization.

In IJCAI.
Harsh Raju Chamarthi, Peter C. Dillinger, Matt Kaufmann, and Panagiotis Manolios. 2011. Integrating Testing and

Interactive Theorem Proving. In Proceedings 10th International Workshop on the ACL2 Theorem Prover and its Applications,
ACL2 2011, Austin, Texas, USA, November 3-4, 2011 (EPTCS, Vol. 70), David Hardin and Julien Schmaltz (Eds.). 4–19.
http://arxiv.org/abs/1110.4473

Adam Chlipala. 2013. Certified Programming with Dependent Types: A Pragmatic Introduction to the Coq Proof Assistant. MIT
Press.

Koen Claessen and John Hughes. 2000. QuickCheck: a lightweight tool for random testing of Haskell programs. In 5th
ACM SIGPLAN International Conference on Functional Programming (ICFP) (ICFP). ACM, 268–279. http://www.eecs.
northwestern.edu/~robby/courses/395-495-2009-fall/quick.pdf

Koen Claessen, Moa Johansson, Dan Rosén, and Nicholas Smallbone. 2013. Automating Inductive Proofs Using Theory
Exploration. In Automated Deduction - CADE-24 - 24th International Conference on Automated Deduction, Lake Placid, NY,

21

https://github.com/coq-contribs/circuits
https://github.com/foobar-land/coq-of-ocaml
https://arxiv.org/abs/1904.03241
http://arxiv.org/abs/1904.03241
http://arxiv.org/abs/1110.4473
http://www.eecs.northwestern.edu/~robby/courses/395-495-2009-fall/quick.pdf
http://www.eecs.northwestern.edu/~robby/courses/395-495-2009-fall/quick.pdf

ACM SIGPLAN Conference on Programming Languages, ,

USA, June 9-14, 2013. Proceedings (Lecture Notes in Computer Science, Vol. 7898), Maria Paola Bonacina (Ed.). Springer,
392–406.

Koen Claessen, Nicholas Smallbone, and John Hughes. 2010. QuickSpec: Guessing Formal Specifications Using Testing. In
TAP@TOOLS (Lecture Notes in Computer Science, Vol. 6143), Gordon Fraser 0001 and Angelo Gargantini (Eds.). Springer,
6–21.

Łukasz Czajka and Cezary Kaliszyk. 2018. Hammer for Coq: Automation for Dependent Type Theory. Journal of Automated
Reasoning 61, 1 (01 Jun 2018), 423–453. https://doi.org/10.1007/s10817-018-9458-4

Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von Raumer. 2015. The Lean Theorem
Prover (System Description). In Automated Deduction - CADE-25, Amy P. Felty and Aart Middeldorp (Eds.). Springer
International Publishing, Cham, 378–388.

Lucas Dixon and Jacques Fleuriot. 2003. IsaPlanner: A prototype proof planner in Isabelle. In International Conference on
Automated Deduction. Springer, 279–283.

Michael D. Ernst. 2000. Dynamically Discovering Likely Program Invariants. Ph.D. University of Washington Department of
Computer Science and Engineering, Seattle, Washington.

P Ezudheen, Daniel Neider, Deepak D’Souza, Pranav Garg, and P Madhusudan. 2018. Horn-ICE learning for synthesizing
invariants and contracts. Proceedings of the ACM on Programming Languages 2, OOPSLA (2018), 1–25.

John K. Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing Data Structure Transformations from Input-Output
Examples. SIGPLAN Not. 50, 6 (jun 2015), 229–239. https://doi.org/10.1145/2813885.2737977

Jean-Christophe Filliâtre, Hugo Herbelin, Bruno Barras, Bruno Barras, Samuel Boutin, Eduardo Giménez, Samuel Boutin,
Gérard Huet, César Muñoz, Cristina Cornes, Cristina Cornes, Judicaël Courant, Judicael Courant, Chetan Murthy, Chetan
Murthy, Catherine Parent, Catherine Parent, Christine Paulin-mohring, Christine Paulin-mohring, Amokrane Saibi,
Amokrane Saibi, Benjamin Werner, and Benjamin Werner. 1997. The Coq Proof Assistant - Reference Manual Version 6.1.
Technical Report.

Emily First, Yuriy Brun, and Arjun Guha. 2020. TacTok: Semantics-Aware Proof Synthesis. In Object-oriented Programming,
Systems, Languages, and Applications.

Jonathan Frankle, Peter-Michael Osera, David Walker, and Steve Zdancewic. 2016. Example-Directed Synthesis: A Type-
Theoretic Interpretation. SIGPLAN Not. 51, 1 (jan 2016), 802–815. https://doi.org/10.1145/2914770.2837629

Emilio Jesús Gallego Arias, Karl Palmskog, and Vasily Pestun. 2020. SerAPI:Machine-Friendly, Data-Centric Serialization for
Coq. https://github.com/ejgallego/coq-serapi.

Pranav Garg, Christof Löding, P Madhusudan, and Daniel Neider. 2014. ICE: A robust framework for learning invariants. In
International Conference on Computer Aided Verification. Springer, 69–87.

Pranav Garg, Daniel Neider, P. Madhusudan, and Dan Roth. 2016. Learning invariants using decision trees and implication
counterexamples. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, Rastislav Bodík and Rupak Majumdar (Eds.). ACM,
499–512. http://dl.acm.org/citation.cfm?id=2837614

Thibault Gauthier, Cezary Kaliszyk, and Josef Urban. 2017. TacticToe: Learning to Reason with HOL4 Tactics. In LPAR-21.
21st International Conference on Logic for Programming, Artificial Intelligence and Reasoning (EPiC Series in Computing,
Vol. 46), Thomas Eiter and David Sands (Eds.). EasyChair, 125–143. https://doi.org/10.29007/ntlb

Jane Thurmann Hesketh. 1992. Using Middle-Out Reasoning to Guide Inductive Theorem Proving. Ph.D. Dissertation.
University of Edinburgh.

Daniel Huang, Prafulla Dhariwal, Dawn Song, and Ilya Sutskever. 2019. GamePad: A Learning Environment for Theorem
Proving. In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net. https://openreview.net/forum?id=r1xwKoR9Y7

B Hummel. 1990. Generation of induction axioms and generalisation. (1990).
Andrew Ireland and Alan Bundy. 1996. Productive use of failure in inductive proof. In Automated Mathematical Induction.

Springer, 79–111.
Moa Johansson, Lucas Dixon, and Alan Bundy. 2010. Dynamic Rippling, Middle-Out Reasoning and Lemma Discovery.

In Verification, Induction, Termination Analysis - Festschrift for Christoph Walther on the Occasion of His 60th Birthday
(Lecture Notes in Computer Science, Vol. 6463), Simon Siegler and Nathan Wasser (Eds.). Springer, 102–116.

Cezary Kaliszyk and Josef Urban. 2015a. HOL(y)Hammer: Online ATP Service for HOL Light. Mathematics in Computer
Science 9, 1 (01 Mar 2015), 5–22. https://doi.org/10.1007/s11786-014-0182-0

Cezary Kaliszyk and Josef Urban. 2015b. MizAR 40 for Mizar 40. Journal of Automated Reasoning 55, 3 (01 Oct 2015), 245–256.
https://doi.org/10.1007/s10817-015-9330-8

Deepak Kapur and Mahadevan Subramaniam. 1996. Lemma Discovery in Automated Induction. In Automated Deduction
- CADE-13, 13th International Conference on Automated Deduction, New Brunswick, NJ, USA, July 30 - August 3, 1996,
Proceedings (Lecture Notes in Computer Science, Vol. 1104), Michael A. McRobbie and John K. Slaney (Eds.). Springer,
538–552.

22

https://doi.org/10.1007/s10817-018-9458-4
https://doi.org/10.1145/2813885.2737977
https://doi.org/10.1145/2914770.2837629
https://github.com/ejgallego/coq-serapi
http://dl.acm.org/citation.cfm?id=2837614
https://doi.org/10.29007/ntlb
https://openreview.net/forum?id=r1xwKoR9Y7
https://doi.org/10.1007/s11786-014-0182-0
https://doi.org/10.1007/s10817-015-9330-8

Data-Driven Lemma Synthesis for Interactive Proofs ACM SIGPLAN Conference on Programming Languages, ,

Matt Kaufmann and J S. Moore. 1997. An Industrial Strength Theorem Prover for a Logic Based on Common Lisp. IEEE
Transactions on Software Engineering 23, 4 (April 1997), 203–213.

Justin Lubin, Nick Collins, Cyrus Omar, and Ravi Chugh. 2020. Program Sketching with Live Bidirectional Evaluation. Proc.
ACM Program. Lang. 4, ICFP, Article 109 (aug 2020), 29 pages. https://doi.org/10.1145/3408991

Anders Miltner, Adrian Trejo Nuñez, Ana Brendel, Swarat Chaudhuri, and Isil Dillig. 2022. Bottom-up Synthesis of Recursive
Functional Programs Using Angelic Execution. Proc. ACM Program. Lang. 6, POPL, Article 21 (jan 2022), 29 pages.
https://doi.org/10.1145/3498682

Anders Miltner, Saswat Padhi, David Walker, and Todd Millstein. 2020. Data-driven inference of representation invariants.
In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation. ACM.

Peter-Michael Osera and Steve Zdancewic. 2015. Type-and-example-directed program synthesis. ACM SIGPLAN Notices 50,
6 (2015), 619–630.

Saswat Padhi, Rahul Sharma, and Todd Millstein. 2016. Data-driven precondition inference with learned features. In
Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation. ACM, 42–56.

Aditya Paliwal, Sarah M. Loos, Markus N. Rabe, Kshitij Bansal, and Christian Szegedy. 2020. Graph Representations for
Higher-Order Logic and Theorem Proving. In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020,
The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on
Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020. AAAI Press, 2967–2974.
https://ojs.aaai.org/index.php/AAAI/article/view/5689

Zoe Paraskevopoulou, Cătălin Hriţcu, Maxime Dénès, Leonidas Lampropoulos, and Benjamin Pierce. 2015. Foundational
Property-Based Testing, Vol. 9236. https://doi.org/10.1007/978-3-319-22102-1_22

Lawrence C. Paulson. 1993. Natural Deduction as Higher-Order Resolution. CoRR cs.LO/9301104 (1993). http://arxiv.org/
abs/cs.LO/9301104

Andrew Reynolds and Viktor Kuncak. 2015. Induction for SMT Solvers. In VMCAI (Lecture Notes in Computer Science,
Vol. 8931), Deepak D’Souza, Akash Lal, and Kim Guldstrand Larsen (Eds.). Springer, 80–98.

Alex Sanchez-Stern, Yousef Alhessi, Lawrence K. Saul, and Sorin Lerner. 2020. Generating correctness proofs with neural
networks. In Proceedings of the 4th ACM SIGPLAN International Workshop on Machine Learning and Programming
Languages, MAPL@PLDI 2020, London, UK, June 15, 2020, Koushik Sen and Mayur Naik (Eds.). ACM, 1–10. https:
//doi.org/10.1145/3394450.3397466

Taro Sekiyama, Akifumi Imanishi, and Kohei Suenaga. 2017. Towards Proof Synthesis Guided by Neural Machine Translation
for Intuitionistic Propositional Logic. CoRR abs/1706.06462 (2017). arXiv:1706.06462 http://arxiv.org/abs/1706.06462

Armando Solar-Lezama. 2009. The Sketching Approach to Program Synthesis. In Programming Languages and Systems,
7th Asian Symposium, APLAS 2009, Seoul, Korea, December 14-16, 2009. Proceedings (Lecture Notes in Computer Science,
Vol. 5904), Zhenjiang Hu (Ed.). Springer, 4–13.

William Sonnex, Sophia Drossopoulou, and Susan Eisenbach. 2012. Zeno: An automated prover for properties of recursive
data structures. In International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer,
407–421.

Daniel Whalen. 2016. Holophrasm: a neural Automated Theorem Prover for higher-order logic. arXiv:1608.02644 [cs.AI]
Kaiyu Yang and Jia Deng. 2019. Learning to Prove Theorems via Interacting with Proof Assistants. In Proceedings of the

36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA (Proceedings
of Machine Learning Research, Vol. 97), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.). PMLR, 6984–6994. http:
//proceedings.mlr.press/v97/yang19a.html

Weikun Yang, Grigory Fedyukovich, and Aarti Gupta. 2019. Lemma synthesis for automating induction over algebraic data
types. In International Conference on Principles and Practice of Constraint Programming. Springer, 600–617.

He Zhu, Stephen Magill, and Suresh Jagannathan. 2018. A data-driven CHC solver. ACM SIGPLAN Notices 53, 4 (2018),
707–721.

23

https://doi.org/10.1145/3408991
https://doi.org/10.1145/3498682
https://ojs.aaai.org/index.php/AAAI/article/view/5689
https://doi.org/10.1007/978-3-319-22102-1_22
http://arxiv.org/abs/cs.LO/9301104
http://arxiv.org/abs/cs.LO/9301104
https://doi.org/10.1145/3394450.3397466
https://doi.org/10.1145/3394450.3397466
https://arxiv.org/abs/1706.06462
http://arxiv.org/abs/1706.06462
https://arxiv.org/abs/1608.02644
http://proceedings.mlr.press/v97/yang19a.html
http://proceedings.mlr.press/v97/yang19a.html

	Abstract
	1 Introduction
	2 Overview
	2.1 Motivating Example
	2.2 Approach

	3 Algorithms
	3.1 Preliminaries
	3.2 Lemma Synthesis
	3.3 Filtering
	3.4 Ranking
	3.5 Discussion

	4 Implementation
	4.1 Example Generation
	4.2 Synthesis
	4.3 Filtering and Ranking
	4.4 Discussion

	5 Experimental Results
	5.1 Benchmark Suite
	5.2 Experimental Setup
	5.3 Synthesized Helper Lemmas
	5.4 Comparison with Other Approaches
	5.5 Sensitivity

	6 Related Work
	6.1 Lemma Synthesis
	6.2 Data-driven Invariant Inference
	6.3 Automated Proofs for Interactive Theorem Provers

	7 Conclusion
	References

